# The 2024 Annual Drinking Water Quality Report

Kenora Water Treatment Plant

March 2025



# **Table of Contents**

# Contents

| Introduction                                                                       | 3  |
|------------------------------------------------------------------------------------|----|
| Kenora Water Treatment Plant                                                       | 3  |
| Municipal Drinking Water License: 228-101                                          | 3  |
| Kenora Water Distribution System                                                   | 3  |
| 2024 Capital Improvements                                                          | 4  |
| Water Quality Testing                                                              | 4  |
| Microbiological standards for treated and distributed water:                       | 4  |
| Operational Testing                                                                | 5  |
| Summary of Operational Testing Results                                             | 5  |
| Operational standards for treated water:                                           | 5  |
| Operational standards for distribution water:                                      | 5  |
| Summary of Chemical Testing Results                                                | 6  |
| Inorganic Parameters – Treated Water (unless otherwise noted)                      | 6  |
| 'Adverse' Results Notifications                                                    | 7  |
| Community-Wide Lead Sampling Program Results                                       | 7  |
| Microcystin Sampling Results                                                       | 8  |
| Water Production                                                                   | 8  |
| Effluent Flow Data                                                                 | 8  |
| Influent Flow Data                                                                 | 8  |
| Historic Flow Data                                                                 | 9  |
| Operational Compliance                                                             | 9  |
| Non-Compliance – OIC identified were not always performing the functions of an OIC | 9  |
| More Information or Questions                                                      | 10 |

## Introduction

The City of Kenora (City) continually provides safe drinking water to all of our customers. As mandated by the Safe Drinking Water Act 2002, Ontario Regulation 170/03 this annual Water Quality Report includes:

- a description of the water treatment process and chemicals used;
- any major expenses to install, repair or upgrade equipment in the system;
- the results of our water tests and how they compare to provincial regulatory standards;
- a summary of incidents of regulatory non-compliance and the corrective actions taken; and,
- a summary of the quantities and water production rates of water supplied, with a comparison to the rated capacity and approved flow rates of the system

## **Kenora Water Treatment Plant**

Municipal Drinking Water License: 228-101

**Drinking Water System**: 220001423

The Kenora Water Treatment Plant (WTP) is located at 5 7th Street South and has a rated capacity of 25 ML/d (million litres per day) of treated drinking water. The raw water source is Lake of the Woods under Permit to Take Water 442-9W7KXC.

This facility is a conventional filtration treatment plant with a process that consists of coagulation, upflow pulsator clarification, dual media filtration (anthracite/sand), fluoridation, pH adjustment, and chloramination for secondary disinfection. The treatment chemicals used in the current reporting year were:

- chlorine gas (seasonal low lift wet well chlorination, disinfection, chloramination);
- sodium silicofluoride (fluoridation);
- aluminum sulphate (coagulation);
- polymer (coagulation aid);
- sodium hydroxide (pH adjustment)
- ammonium sulphate (chloramination for secondary disinfection)

The WTP is controlled through a Supervisory Control and Data Acquisition (SCADA) system that is monitored twenty-four hours per day, seven days per week. The treated drinking water is pumped into the Kenora Drinking Water System and is distributed to connected residents and water haulage customers.

# **Kenora Water Distribution System**

The City's Water Distribution System consists of 136km of piping, 3 standpipes (Kenora Zone 1, Kenora Zone 2, Keewatin), and 5 booster stations (Brinkman Zone 2 Booster, Zone 3 Booster, Zone 4 Booster, Norman Booster, Pine Portage Booster) for pressurization and distribution of water between zones.

The drinking water system also provides drinking water to two private subsystems which are located on Rocky Heights Road, and on Wauzhushk Onigum Nation.

## **2024 Capital Improvements**

In the current reporting year, approximately \$1,152,000 was spent on capital upgrades at the Kenora WTP and outlying Booster Station and Standpipes. Projects included:

| Project                                                                                                                                 | Expense Type | Location     | Value     |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------|
| Park Street from 10 <sup>th</sup> Avenue South to Maple Street                                                                          | Replacement  | Distribution | \$566,000 |
| Mikado Avenue from 10 <sup>th</sup> Street North to end of service, and 10 <sup>th</sup> Street North from Mikado Avenue to Rupert Road | Replacement  | Distribution | \$406,000 |
| Preston Street from Dead End to 8th Street North                                                                                        | Replacement  | Distribution | \$144,000 |
| Pump Rebuilds at Brinkman Booster, Zone 4 Booster, and Pine Portage Booster                                                             | Repair       | Distribution | \$14,400  |
| Ultrasonic Level Measurement for Bulk Chemical Tanks                                                                                    | Install      | WTP          | \$7,200   |
| Online Turbidimeter and Controller for West Clarifier                                                                                   | Install      | WTP          | \$14,000  |

In addition to capital upgrades, the City continues to enhance public health protection from the Water Treatment Plant to household tap through water sampling and monitoring, ongoing upgrades to the SCADA monitoring and infrastructure management systems, oversight of water connections to the distribution system, and backflow prevention. These practices undergo continual improvement through the annual review of the Drinking Water Quality Management System. Maintaining and updating the City's Drinking Water Quality Management System is a provincially legislated requirement of a licensed municipal drinking water system.

# **Water Quality Testing**

The City performs water quality tests each and every day, in accordance with the *Safe Drinking Water Act*, 2002 and regulations. The following sections provide a summary of the test results.

#### **Terms**

CFU/100 mL: Colony-forming units per 100 millilitres of water

μg/L: micrograms per litre mg/L: milligrams per litre

Standard: Ontario Drinking Water Quality Standard, O.Reg. 169/03

E. Coli: Escherichia coli; Bacteria associated with the intestinal tracts of humans and animals

Coliforms: Bacteria that can be associated with human or animal waste

## Summary of Microbiological Testing Results

|               | Number of<br>Samples | E. coli<br>Results<br>(min - max) | Total Coliform<br>Results<br>(min - max) | Number of<br>Heterotrophic<br>Plate Count*<br>Samples | Heterotrophic Plate<br>Count Results<br>(min – max) |
|---------------|----------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| Raw Water     | 52                   | 0 – 7                             | 0 – 461                                  | N/A                                                   | N/A                                                 |
| Treated Water | 52                   | Absent                            | Absent                                   | 52                                                    | 0 - 4                                               |
| Distribution  | 358                  | Absent                            | Absent                                   | 104                                                   | 0 - 10                                              |

#### Microbiological standards for treated and distributed water:

E.coli Not Detectable Total Coliforms Not Detectable

HPC Heterotrophic Plate Counts are conducted on some treated and distribution system samples. The HPC test is used as a tool to

monitor overall quality, but the results are not indicators of water safety. There is no Drinking Water Quality Standard for HPC.

## **Operational Testing**

Kenora's WTP uses continuous analyzers to measure and record the results of chlorine residual, turbidity and fluoride residual throughout the treatment process in the treated water, and drinking water system several times per minute, twenty-four hours per day, seven days per week. The readings are validated by an operator and are reviewed by the Ministry of the Environment, Conservation and Parks (MECP) Inspector. Kenora operators measure the chlorine in the distributed water. 'Adverse' test results must be reported if there is an indication that primary inactivation (disinfection) may not have been achieved, if the turbidity of filtered water is >1.0 Nephelometric Turbidity unit (NTU), if the fluoride residual is >1.5 mg/L or if a free chlorine residual in the distribution system is <0.25 mg/L.

#### **Summary of Operational Testing Results**

In Plant Monitoring Results

| Parameter                            | Units      | Samples                  | WTP Result<br>Minimum | WTP Result<br>Maximum | Adverse |
|--------------------------------------|------------|--------------------------|-----------------------|-----------------------|---------|
| Raw Water Turbidity                  | NTU        | 83                       | 0.468                 | 7.07                  |         |
| Raw Water pH                         | pН         | 53                       | 6.95                  | 8.13                  |         |
| Raw Water Colour                     | PtCo       | 53                       | 20                    | 74                    |         |
| Raw Water Alkalinity                 | mg/L CaCO₃ | 53                       | 40                    | 56                    |         |
| Raw Dissolved Organic Carbon         | mg/L       | 3                        | 9.56                  | 13.3                  |         |
| Filter #1 Effluent Turbidity         | NTU        | Continuous<br>Monitoring | 0.029                 | 0.283                 | No      |
| Filter #2 Effluent Turbidity         | NTU        | Continuous<br>Monitoring | 0.021                 | 0.329                 | No      |
| Filter #3 Effluent Turbidity         | NTU        | Continuous<br>Monitoring | 0.023                 | 1.058                 | No      |
| Filter #4 Effluent Turbidity         | NTU        | Continuous<br>Monitoring | 0.031                 | 0.766                 | No      |
| Fluoride Residual                    | mg/L       | Continuous<br>Monitoring | 0.20                  | 0.92                  | No      |
| Clearwell Effluent Chlorine Residual | mg/L       | Continuous<br>Monitoring | 0.63                  | 3.46                  | No      |

#### Operational standards for treated water:

Chlorine Residual Reportable: <0.25 mg/L, >4 mg/L

NTU >1.0

Fluoride Residual Reportable: >1.5 mg/L

#### Terminology

Residual: Concentration of active component in the water

NTU: Nephelometric Turbidity unit – Measures the presence of suspended material in water no greater than 1 unit (>1.0)

PtCo: Platinum Cobalt Colour Scale - Assesses organic levels in water

CaCO<sub>3</sub>: Calcium Carbonate – Assesses hardness of water

CFU/100ml - Number of colony forming microbial cells per 100ml of water sample

#### Distribution Monitoring Results

| Sample Type                                | Units | Samples | Minimum Result | Maximum<br>Result | Adverse |
|--------------------------------------------|-------|---------|----------------|-------------------|---------|
| Distribution Chlorine Residual             | mg/L  | 468     | 0.60           | 2.17              | No      |
| Non-Routine Distribution Chorine Residuals | mg/L  | 152     | 0.01           | 2.20              | 1*      |

<sup>\*</sup>Noted in 'Adverse' Results Notifications

#### Operational standards for distribution water:

Chlorine Residual Reportable: <0.25 mg/L, >3 mg/L

#### **Terminology**

Non-Routine Sampling driven by watermain repairs, construction, and water quality complaints

## **Summary of Chemical Testing Results**

## Inorganic Parameters – Treated Water (unless otherwise noted)

| Parameter         | Sample Date | Units | WTP Result | Standard Limit | Exceedance of Standard |
|-------------------|-------------|-------|------------|----------------|------------------------|
| Antimony          | 01/22/24    | μg/L  | <0.60      | 6              | No                     |
| Arsenic           | 01/22/24    | μg/L  | <1.0       | 10             | No                     |
| Barium            | 01/22/24    | μg/L  | <10        | 1000           | No                     |
| Boron             | 01/22/24    | μg/L  | <50        | 5000           | No                     |
| Cadmium           | 01/22/24    | μg/L  | <0.10      | 5              | No                     |
| Chromium          | 01/22/24    | μg/L  | <1.0       | 50             | No                     |
| Mercury           | 01/22/24    | μg/L  | <0.100     | 1              | No                     |
| Selenium          | 01/22/24    | μg/L  | <1.0       | 50             | No                     |
| Sodium            | 01/22/24    | μg/L  | 14.0       | 20             | No                     |
| Uranium           | 01/22/24    | μg/L  | <2.0       | 20             | No                     |
| Nitrite (Maximum) | Quarterly   | mg/L  | 0.180      | 10             | No                     |
| Nitrate (Maximum) | Quarterly   | mg/L  | <0.010     | 1              | No                     |

### Organic Parameters – Treated Water (unless otherwise noted)

| Parameter                                   | Sample Date | Units | WTP Result | Standard Limit | Exceedance of Standard |
|---------------------------------------------|-------------|-------|------------|----------------|------------------------|
| Alachlor                                    | 01/22/24    | μg/L  | <0.050     | 5              | No                     |
| Atrazine + N-dealkylated metobolites        | 01/22/24    | μg/L  | <0.14      | 5              | No                     |
| Azinphos-methyl                             | 01/22/24    | μg/L  | <0.100     | 20             | No                     |
| Benzene                                     | 01/22/24    | μg/L  | <0.50      | 1              | No                     |
| Benzo(a)pyrene                              | 01/22/24    | μg/L  | <0.0050    | 0.01           | No                     |
| Bromoxynil                                  | 01/22/24    | μg/L  | <0.250     | 5              | No                     |
| Carbaryl                                    | 01/22/24    | μg/L  | <0.050     | 90             | No                     |
| Carbofuran                                  | 01/22/24    | μg/L  | <0.0250    | 90             | No                     |
| Carbon Tetrachloride                        | 01/22/24    | μg/L  | <0.20      | 2              | No                     |
| Chlorpyrifos                                | 01/22/24    | μg/L  | <0.10      | 90             | No                     |
| Diazinon                                    | 01/22/24    | μg/L  | <0.0250    | 20             | No                     |
| Dicamba                                     | 01/22/24    | μg/L  | <0.10      | 120            | No                     |
| 1,2-Dichlorobenzene                         | 01/22/24    | μg/L  | <0.50      | 200            | No                     |
| 1,4-Dichlorobenzene                         | 01/22/24    | μg/L  | <0.50      | 5              | No                     |
| 1,2-Dichloroethane                          | 01/22/24    | μg/L  | <0.50      | 5              | No                     |
| 1,1-Dichloroethylene (vinylidene chloride)  | 01/22/24    | μg/L  | <0.50      | 14             | No                     |
| Dichloromethane                             | 01/22/24    | μg/L  | <1.0       | 50             | No                     |
| 2-4 Dichlorophenol                          | 01/22/24    | μg/L  | <0.30      | 900            | No                     |
| 2,4-Dichlorophenoxy acetic acid (2,4-D)     | 01/22/24    | μg/L  | <0.050     | 100            | No                     |
| Diclofop-methyl                             | 01/22/24    | μg/L  | <0.100     | 9              | No                     |
| Dimethoate                                  | 01/22/24    | μg/L  | <0.050     | 20             | No                     |
| Diquat                                      | 01/22/24    | μg/L  | <1.0       | 70             | No                     |
| Diuron                                      | 01/22/24    | μg/L  | <0.050     | 150            | No                     |
| Glyphosate                                  | 01/22/24    | μg/L  | <0.20      | 200            | No                     |
| Distribution HAA (Running Annual Average)   | Quarterly   | μg/L  | 30.2       | 80             | No                     |
| 2-Methyl-4- chlorophenoxyacetic acid (MCPA) | 01/22/24    | μg/L  | <0.050     | 100            | No                     |
| Malathion                                   | 01/22/24    | μg/L  | <0.0250    | 190            | No                     |

| Metolachlor                               | 01/22/24  | μg/L | <0.0250 | 50  | No |
|-------------------------------------------|-----------|------|---------|-----|----|
| Metribuzin                                | 01/22/24  | μg/L | <0.100  | 80  | No |
| Monochlorobenzene                         | 01/22/24  | μg/L | <0.50   | 80  | No |
| Distribution N-Nitrosodimethylamine       | Quarterly | ng/L | 2.1     | 9   | No |
| (NDMA Maximum)                            |           |      |         |     |    |
| Paraquat                                  | 01/22/24  | μg/L | <1.0    | 10  | No |
| Pentachlorophenol                         | 01/22/24  | μg/L | <0.50   | 60  | No |
| Phorate                                   | 01/22/24  | μg/L | <0.250  | 2   | No |
| Picloram                                  | 01/22/24  | μg/L | <0.50   | 190 | No |
| Polychlorinated Biphenyls (PCB)           | 01/22/24  | μg/L | <0.030  | 3   | No |
| Prometryne                                | 01/22/24  | μg/L | <0.0250 | 1   | No |
| Simazine                                  | 01/22/24  | μg/L | <0.100  | 10  | No |
| Distribution THM (Running Annual Average) | Quarterly | μg/L | 42.1    | 100 | No |
| Terbufos                                  | 01/22/24  | μg/L | <0.50   | 1   | No |
| Tetrachloroethylene (perchloroethylene)   | 01/22/24  | μg/L | <0.50   | 10  | No |
| 2,3,4,6-Tetrachlorophenol                 | 01/22/24  | μg/L | <0.50   | 100 | No |
| Triallate                                 | 01/22/24  | μg/L | <0.100  | 230 | No |
| Trichloroethylene                         | 01/22/24  | μg/L | <0.50   | 5   | No |
| 2,4,6-Trichlorophenol                     | 01/22/24  | μg/L | <0.50   | 5   | No |
| Trifluralin                               | 01/22/24  | μg/L | <0.10   | 45  | No |
| Vinyl Chloride                            | 01/22/24  | μg/L | <0.50   | 1   | No |

## 'Adverse' Results Notifications

The following tables show the notices of 'adverse' water quality results submitted in accordance with the *Safe Drinking Water Act. 2002* to the MECP and the Medical Officer of Health.

| Sample Date          | Location     | Adverse Condition | Corrective Action                                      | Notice of Issue<br>Resolution |
|----------------------|--------------|-------------------|--------------------------------------------------------|-------------------------------|
| September 17th, 2024 | Distribution | Low Chlorine      | System flushed, resampled, and resample results passed | October 1st, 2024             |

#### **Terms**

CFU/100 mL - Colony-forming units per 100 milliliters of water

# **Community-Wide Lead Sampling Program Results**

Under Schedule 15.1 of O. Reg. 170/03 the City of Kenora meets the requirements for reduced sampling. Previous rounds of residential plumbing sampling indicated lead levels did not meet the threshold required for continued annual testing, so lead samples are currently taken from distribution locations every three years. Sampling requirements in 2024 included distribution lead samples.

| Sample Type  | Samples<br>Taken | Microcystin<br>Results Range<br>(ug/L) |      | Microcystin<br>Regulation<br>(ug/L) |
|--------------|------------------|----------------------------------------|------|-------------------------------------|
| Distribution | 8                | <1.0                                   | <1.0 | 10                                  |

## **Microcystin Sampling Results**

Under the direction of the MECP, Microcystin-LR samples were collected on a weekly basis from June to October from the WTP.

| Sample Type | Samples<br>Taken | Microcystin<br>Results Range<br>(ug/L) |      | Microcystin<br>Regulation<br>(ug/L) |
|-------------|------------------|----------------------------------------|------|-------------------------------------|
| Raw         | 26               | <0.1                                   | 0.4  | N/A                                 |
| Treated     | 26               | <0.1                                   | <0.1 | 1.5                                 |

## **Water Production**

#### **Effluent Flow Data**

In 2024 the Kenora WTP pumped a total of 2,219,993 cubic meters (m³) of water to the distribution system. The highest daily flow took place in May, with a total of 7,951 m³ being pumped on the 30th. This is 31% of the plants rated capacity of 25,270m³/d.

| Month     | Total Monthly Flow (m <sup>3</sup> ) | Average Daily Flow (m³/d) | Maximum Daily Flow (m³/d) |
|-----------|--------------------------------------|---------------------------|---------------------------|
| January   | 200,496                              | 6,468                     | 7,337                     |
| February  | 190,544                              | 6,805                     | 7,447                     |
| March     | 209,693                              | 6,764                     | 7,311                     |
| April     | 194,096                              | 6,470                     | 7,369                     |
| May       | 178,751                              | 5,766                     | 7,951                     |
| June      | 172,932                              | 5,764                     | 7,253                     |
| July      | 183,166                              | 5,909                     | 7,357                     |
| August    | 186,874                              | 6,028                     | 6,736                     |
| September | 174,542                              | 5,818                     | 6,492                     |
| October   | 171,240                              | 5,524                     | 6,124                     |
| November  | 169,125                              | 5,638                     | 6,426                     |
| December  | 188,544                              | 6,082                     | 6,676                     |

#### **Influent Flow Data**

In 2024 the Kenora WTP pumped a total of 2,271,086 m³ of raw water from Lake of the Woods. The highest daily flow took place in May, with a total of 8,329 m³ being pumped on the 30th. This is 32% of the plant's water taking limit of 26,000 m³/d as set out in the Permit to Take Water (PTTW). The highest instantaneous rate at which water was taken from Lake of the Woods was 22,588 m³/day, which occurred on June 26th. This is also 87% of the limit set out in the PTTW.

| Month     | Total Monthly Flow (m <sup>3</sup> ) | Average Daily Flow (m³/d) | Maximum Daily Flow (m <sup>3</sup> /d) |
|-----------|--------------------------------------|---------------------------|----------------------------------------|
| January   | 203,949                              | 6,579                     | 7,456                                  |
| February  | 194,493                              | 6,946                     | 7,623                                  |
| March     | 214,480                              | 6,919                     | 7,503                                  |
| April     | 199,551                              | 6,652                     | 7,700                                  |
| Мау       | 183,638                              | 5,924                     | 8,329                                  |
| June      | 178,578                              | 5,953                     | 7,718                                  |
| July      | 186,100                              | 6,003                     | 7,677                                  |
| August    | 194,467                              | 6,273                     | 7,403                                  |
| September | 176,975                              | 5,899                     | 6,622                                  |
| October   | 175,396                              | 5,658                     | 6,522                                  |
| November  | 172,405                              | 5,747                     | 6,590                                  |
| December  | 191,054                              | 6,163                     | 6,787                                  |

#### **Historic Flow Data**

Total effluent flow has remained relatively stable over the past 10 years. There is no expectation of significant greater demand

on the system in the near future.

| Year | Total Effluent Flow (m <sup>3</sup> ) | Average Daily Flow (m³/d) | Annual Change | 2024 Comparison |
|------|---------------------------------------|---------------------------|---------------|-----------------|
| 2014 | 2,621,655                             | 7,183                     | N/A           | 118%            |
| 2015 | 2,452,926                             | 6,720                     | -6.4%         | 111%            |
| 2016 | 2,066,260                             | 5,646                     | -15.8%        | 93%             |
| 2017 | 2,151,431                             | 5,894                     | +4.1%         | 97%             |
| 2018 | 2,247,301                             | 6,157                     | +4.5%         | 102%            |
| 2019 | 2,229,036                             | 6,107                     | -0.8%         | 101%            |
| 2020 | 2,182,328                             | 5,963                     | -2.1%         | 98%             |
| 2021 | 2,274,543                             | 6,232                     | +4.2%         | 103%            |
| 2022 | 2,329,057                             | 6,381                     | +2.4%         | 105%            |
| 2023 | 2,332,904                             | 6,392                     | +0.2%         | 105%            |
| 2024 | 2,219,993                             | 6,066                     | -5.4%         |                 |

## **Operational Compliance**

An inspection was conducted by the Ministry of Environment Conservation and Parks (MECP) on April 30<sup>th</sup> and May 1<sup>st</sup>. The final inspection rating was 100.00%. One non-compliance was identified in the inspection report.

#### Non-Compliance - OIC identified were not always performing the functions of an OIC

Issue: Operators signing in as OIC's were not performing the functions of an OIC.

<u>Corrective Actions Taken</u>: An operator will only log in as an OIC in the logbook when performing OIC duties. June and July logbook entries were resubmitted for review and the corrections satisfied the Ministry. No further action is required.

## **More Information or Questions**

This report is available free of charge to anyone who requests a copy. An electronic copy is available on the City of Kenora website, and anyone wanting to be provided a paper copy can make arrangements to pick one up from the Water Treatment Plant. Any inquiries or concerns or request for copies of this report can be directed to:

Bill Mundy C.E.T. General Manager of Utilities 807-467-2004 bmundy@kenora.ca www.kenora.ca